Novel Route to 4,5,6,7-Tetrahydroindoles and Pyrroles

Takehiko Nishio,* Norikazu Okuda and Choji Kashima
Department of Chemistry, University of Tsukuba, Tsukuba-shi, Ibaraki 305, Japan

Treatment of cyclic unsaturated amides, 1,4,5,6,7,7a-hexahydro- 2 H -indol-2-ones 1, with Lawesson's reagent [2,4-bis-(p-methoxyphenyl)-1,3-dithia-2,4-diphosphetane 2,4-disulfide] yielded unexpected products, 4,5,6,7-tetrahydroindoles 2, in moderate yield. Reduction of compounds 1 with diisobutylaluminium hydride also gave compounds 2 in good yield. In contrast, treatment of monocyclic 1,5-dihydropyrrol-2-ones 5 with Lawesson's reagent gave the thionation products, 1,5-dihydropyrrole-2-thiones 7, as main products, along with pyrroles 6.

2,4-Bis-(p-methoxyphenyl)-1,3-dithia-2,4-diphosphetane 2,4disulfide, generally called Lawesson's reagent (LR), ${ }^{1}$ is known to be a superior reagent for the conversion of a wide variety of carbonyl compounds, including amide and ester carbonyls, into thiocarbonyl compounds. In the course of our studies on the reactivity of cyclic thioamide systems, ${ }^{2}$ we found that 3-hydroxyisoindolin-1-ones reacted with LR to give isoindoline-1-thiones in good yield by the direct thionation of the amide carbonyl and reductive elimination of the hydroxy group. ${ }^{3}$ We also reported a novel transformation of alcohols to thiols by treatment of various alcohols with LR. ${ }^{4}$ We report now a novel synthesis of 4,5,6,7-tetrahydroindoles 2 and pyrroles 6 by the reactions of hexahydro- 2 H -indol-2-ones 1 and dihydropyrrol-2ones 5 with LR. Furthermore, we report an efficient method for the preparation of tetrahydroindoles 2 by the partial reduction of amides 1 with diisobutylaluminium hydride (DIBAH).

Results and Discussion

A mixture of 1-phenyl-1,4,5,6,7,7a-hexahydro-2 H -indol-2-one 1a and LR (2 mol equiv.) in a mixed benzene-1,2-dimethoxyethane (DME) solution was heated to reflux under argon for 15 min to yield an unexpected product, 1-phenyl-4,5,6,7-tetrahydroindole 2 a in 55% yield. The thionation product, 1-phenyl-1,4,5,6,7,7a-hexahydro- 2 H -indole-2-thione 4a, could not be isolated even when fewer mol equivalents of LR were used. The structure of compound $\mathbf{2 a}$ was elucidated on the basis of spectroscopic and elemental analysis data. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 2a shows two doublets, at $\delta 6.09(1 \mathrm{H})$ and $6.75(1 \mathrm{H})$, with the same coupling constant ($J 2.4 \mathrm{~Hz}$) assignable to ring protons at C- 3 and -2 . The ${ }^{13} \mathrm{C}$ NMR spectrum of compound 2 a displays four triplets, at $\delta_{\mathrm{c}} 23.3,23.5(\times 2)$, and 23.6 , in addition to aromatic carbon signals ($\delta_{\mathrm{c}} 119.0-140.3$) and no thiocarbonyl carbon signal around $\delta_{\mathrm{C}} 200$ appeared. In a similar manner, 1,4,5,6,7,7a-hexahydro- 2 H -indol-2-ones 1 b-e reacted with LR to yield the corresponding tetrahydroindoles $\mathbf{2 b}-\mathbf{e}$ in moderate yield (Table 1). Further proof of the structure of the tetrahydroindoles 2 was achieved by the oxidation of these compounds $\mathbf{2}$ to indoles $\mathbf{3}$ (Scheme 1). The tetrahydroindoles 2a, \mathbf{e} thus obtained were oxidized with chloranil to yield indoles 3a, \mathbf{e}, whose structures were confirmed by direct comparison of their IR and NMR spectra with those of authentic samples. ${ }^{2 d}$
On the other hand, treatment of monocyclic unsaturated amides, 1,5-dihydropyrrol-2-ones 5, with LR gave the thionation products, 1,5 -dihydropyrrole-2-thiones 7 , as main products ($27-64 \%$), along with pyrroles $6(11-32 \%$) (Scheme 2) (see Table 2). The structure of products 7 and 6 was confirmed by spectral and elemental analysis data (see Experimental section). The ${ }^{13} \mathrm{C}$ NMR spectra of compounds 7 showed $\mathrm{C}=\mathrm{S}$ resonances at δ_{C} 195.5-195.7.

Scheme 1 Method A: LR, benzene-DME. Method B: DIBAH, THF

Table 1 Yields of 4,5,6,7-tetrahydroindoles $\mathbf{2}$ and indoles 3

	Method ${ }^{\text {b }}$	Yield (\%) ${ }^{\text {a }}$			
		2			3
$1 \mathbf{1}$	A	55	(12, ${ }^{\text {c }}$	$33^{\text {d }}$)	52
	B	80			
1 b	A	52			
	B	73			
1 c	A	27			
	B	77			
1 d	A	35			
	B	64			
1 e	A	30			48
	B	40			

${ }^{a}$ Isolated yield. ${ }^{b}$ Method A: LR, reflux in benzene-DME. Method B: DIBAH in THF. ${ }^{c} 0.5 \mathrm{~mol}$ equiv. of LR was used. ${ }^{d} 1 \mathrm{~mol}$ equiv. of LR was used.

The reaction mechanism almost certainly involves initial thionation of amides 1,5 to thioamide $(4,7)$ or thiol species $\left(4^{\prime}\right.$, 7^{\prime}), which then suffer reductive elimination of the thiol group

Table 2 Yields of pyrroles 6 and 2 H -pyrrole-2-thiones 7

	Molar quotient LR/5	Yield (\%) ${ }^{\text {a }}$	
		6	7
5 a	1	b	50
	2	b	29
5b	0.5	22	55
	$0.5{ }^{\text {c }}$	11	64
	1	34	35
	2	32	41
5c	0.5	20	28
	1	19	27

${ }^{a}$ Isolated yield. ${ }^{b}$ Not detected. ${ }^{c}$ DME was used as solvent.
(Scheme 3). This is supported by the observation that the yield of the indole 2 a increases with an increase in the ratio LR: indol-2one in the reaction of compound 1a with LR (see Table 1).

Scheme 3 Reagent: LR
There have been only a few reports on the synthesis of indoles by the reduction of indol-2-ones. ${ }^{5}$ DIBAH is known to be an excellent partial reducing reagent of unsaturated amides and lactams (selective reduction of amide carbonyl). ${ }^{6}$ Therefore we carried out the reduction of compounds 1 with DIBAH. Hexahydro- 2 H -indol-2-ones 1a-e were treated with an excess of DIBAH to give the corresponding tetrahydroindoles 2 in good yield. On the other hand, reduction of compound 1 la with lithium aluminium hydride (LAH) ${ }^{7}$ gave a mixture of tetrahydroindoles 2a and the hexahydroindoline 8 (Scheme 4) since LAH has been reported to be a less selective reducing agent for the amide carbonyl of unsaturated amides and lactams. ${ }^{5 b, c}$ The analogous reduction of unsaturated 1,5-dihydropyrrol-2-ones with DIBAH to pyrroles was reported by Kochhar and Pinnick. ${ }^{6 b}$ The reaction described here would be a simple method for the synthesis of 4,5,6,7-tetrahydroindoles 2 and indoles 3.

Scheme 4 Reagents: LAH, $\mathrm{Et}_{2} \mathrm{O}$

Experimental

M.p.s and b.p.s were measured with a Yanaco micro-melting point apparatus and Buchi Kugelrohr distillation apparatus, respectively, and are uncorrected. IR spectra were determined with JASCO IR-1 and Hitachi $260-30$ spectrophotometers. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were run on JEOL FX-100 $(100 \mathrm{MHz})$ or FX-90 Q (90 MHz) spectrometers in CDCl_{3} as solvent with tetramethylsilane as internal standard. J-Values are given in Hz . Silica gel (Merck 60 or Wakogel C-300 for flash chromatography) was used for column chromatography.

Materials.-1,4,5,6,7,7a-Hexahydro- 2 H -indol-2-ones 1 were prepared by a modification of a previously reported literature method, ${ }^{7}$ the 1,5 -dihydropyrrol-2-one 5 was prepared according to a literature method, ${ }^{6 b}$ and the dihydropyrrol-2-ones 5 b and
$\mathbf{5 c}$ were prepared by a modification of this method. The structure of ' 1 -phenyltetrahydroindolin-2-one' was stated to be $1 \mathbf{a}^{\prime}$ (m.p. $122-122.5^{\circ} \mathrm{C}$) in the literature. ${ }^{7}$ However, on the basis of spectral data, especially the ${ }^{13} \mathrm{C}$ NMR spectrum, with four methylene ($\delta_{\mathrm{C}} 23.0,27.6,28.4,33.4$), a methine ($\delta_{\mathrm{C}} 62.4$), two olefinic ($\delta_{\mathrm{C}} 118.6,162.1$), and a carbonyl ($\delta_{\mathrm{C}} 170.1$) carbon peaks in addition to aromatic carbon ones, its structure should be revised as 1a.

1-Phenyl-1,4,5,6,7,7a-hexahydro-2H-indol-2-one 1a. M.p. 112$113{ }^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane) (Found: $\mathrm{C}, 78.55 ; \mathrm{H}, 7.1 ; \mathrm{N}, 6.5$. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}$ requires $\mathrm{C}, 78.85 ; \mathrm{H}, 7.1 ; \mathrm{N}, 6.55 \%$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1670 and $1640 ; \delta_{\mathrm{H}} 0.88-2.44(7 \mathrm{H}, \mathrm{m}), 2.73-2.87(1 \mathrm{H}, \mathrm{m}), 4.27-$ $4.43(1 \mathrm{H}, \mathrm{m}), 5.85(1 \mathrm{H}, \mathrm{s})$ and $7.05-7.56(5 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 23.0(\mathrm{t}), 27.6$ (t), 28.4 (t), 33.4 (t), 62.4 (d), 118.6 (d), 121.5 (d), 124.2 (d), 128.8 (d), 137.3 (s), 162.1 (s) and 170.1 (s).

1-(p-Tolyl)-1,4,5,6,7,7a-hexahydro-2H-indol-2-one 1b. M.p. $115-116{ }^{\circ} \mathrm{C}$ (from $\mathrm{CHCl}_{3}-$ hexane) (Found: $\mathrm{C}, 79.2 ; \mathrm{H}, 7.55 ; \mathrm{N}$, 6.05. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}$ requires $\mathrm{C}, 79.25 ; \mathrm{H}, 7.55 ; \mathrm{N}, 6.15 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1670$ and $1615 ; \delta_{\mathrm{H}} 0.84-2.50(7 \mathrm{H}, \mathrm{m}), 2.32(3 \mathrm{H}$, s), 2.72-2.88 (1 H, m), 4.22-4.38(1 H, m), $5.84(1 \mathrm{H}, \mathrm{s})$ and $7.12-$ 7.41 ($4 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}} 20.9(\mathrm{q}), 23.1$ (t), 27.7 (t), 28.4 (t), 33.6 (t), 62.7 (d), 118.9 (d), 121.8 (d), 129.5 (d), 134.1 (s), 134.8 (s), 162.0 (s) and 171.2 (s).

1-(p-Methoxyphenyl)-1,4,5,6,7,7a-hexahydro-2H-indol-2-one 1c. M.p. $107-108^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane) (Found: $\mathrm{C}, 74.15$; H , 7.05; $\mathrm{N}, 5.7 . \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $\mathrm{C}, 74.05 ; \mathrm{H}, 7.05, \mathrm{~N}, 5.75 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1685 ; \delta_{\mathrm{H}} 0.97-2.43(7 \mathrm{H}, \mathrm{m}), 2.72-2.85(1 \mathrm{H}, \mathrm{m})$, $3.78(3 \mathrm{H}, \mathrm{s}), 4.17-4.34(1 \mathrm{H}, \mathrm{m}), 5.84(1 \mathrm{H}, \mathrm{s}), 6.82-6.98(2 \mathrm{H}, \mathrm{m})$ and $7.28-7.44(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 23.1(\mathrm{t}), 27.7(\mathrm{t}), 28.5(\mathrm{t}), 33.7(\mathrm{t}), 55.5$ (q), 63.1 (d), 114.3 (d), 118.7 (d), 124.0 (d), 130.4 (s), 156.8 (s), 162.0 (s) and 172.0 (s).

1-(p-Chlorophenyl)-1,4,5,6,7,7a-hexahydro-2H-indol-2-one 1d. M.p. $124-125^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane) (Found: $\mathrm{C}, 67.6 ; \mathrm{H}$, 5.65; $\mathrm{N}, 5.65 . \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{CINO}$ requires $\mathrm{C}, 67.85 ; \mathrm{H}, 5.7 ; \mathrm{N}, 5.65 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1665 ; \delta_{\mathrm{H}} 0.85-2.45(7 \mathrm{H}, \mathrm{m}), 2.74-2.88(1 \mathrm{H}, \mathrm{m})$, 4.24-4.41 ($1 \mathrm{H}, \mathrm{m}), 5.85(1 \mathrm{H}, \mathrm{s})$ and $7.25-7.53(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 23.1$ (t), 27.7 (t), 28.5 (t), 33.5 (t), 62.4 (d), 118.8 (d), 122.4 (d), 129.0 (d), 129.4 (s), 136.0 (s), 162.4 (s) and 170.1 (s).

3-Methyl-1-phenyl-1,4,5,6,7,7a-hexahydro-2H-indol-2-one 1e. M.p. $93-94{ }^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane) (Found: $\mathrm{C}, 79.1$; $\mathrm{H}, 7.55$; $\mathrm{N}, 6.1 . \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}$, requires $\mathrm{C}, 79.25 ; \mathrm{H}, 7.55 ; \mathrm{N}, 6.15 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1670 ; \delta_{\mathrm{H}} 0.88(7 \mathrm{H}, \mathrm{m}), 1.85(3 \mathrm{H}, \mathrm{s}), 2.76-2.91$ $(1 \mathrm{H}, \mathrm{m}), 4.15-4.32(1 \mathrm{H}, \mathrm{m})$ and $7.00-7.60(5 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 8.4(\mathrm{q})$, 23.5 (t), 26.2 (t), 27.4 (t), 33.4 (t), 61.0 (d), 121.2 (d), 124.0 (d), 125.1 (s), 128.9 (d), 137.8 (s), 153.0 (s) and 170.9 (s).

4-Ethoxy-1-phenyl-1,5-dihydropyrrol-2-one 5b. M.p. 105$106^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane) (Found: $\mathrm{C}, 70.95$; H, 6.45; N, 6.7. $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2}$ requires $\mathrm{C}, 70.9 ; \mathrm{H}, 6.45 ; \mathrm{N}, 6.9 \%$; ; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1685 and 1635 ; $\delta_{\mathrm{H}} 1.41(3 \mathrm{H}, \mathrm{t}), 4.04(2 \mathrm{H}, \mathrm{q}), 4.24(2 \mathrm{H}, \mathrm{s}), 5.11$ $(1 \mathrm{H}, \mathrm{s}), 6.96-7.13(1 \mathrm{H}, \mathrm{m}), 7.22-7.43(2 \mathrm{H}, \mathrm{m})$ and $7.55-7.69$ ($2 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}} 14.1$ (q), 50.8 (t), 67.3 (t), 95.7 (d), 118.3 (d), 123.1 (d), 129.0 (d), 139.4 (s), 170.8 (s) and 171.6 (s).

4-Ethoxy-1-(p-tolyl)-1,5-dihydropyrrol-2-one 5c. M.p. 131$132{ }^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane) (Found: $\mathrm{C}, 71.85 ; \mathrm{H}, 7.0 ; \mathrm{N}, 6.4$. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires $\mathrm{C}, 71.85 ; \mathrm{H}, 6.95 ; \mathrm{N}, 6.45 \%$); $v_{\max }(\mathrm{KBr}) /$ $\mathrm{cm}^{-1} 1665$ and $1620 ; \delta_{\mathrm{H}} 1.41(3 \mathrm{H}, \mathrm{t}), 2.30(3 \mathrm{H}, \mathrm{s}), 4.03(2 \mathrm{H}$, q), $4.20(2 \mathrm{H}, \mathrm{s}), 5.10(1 \mathrm{H}, \mathrm{s}), 7.13(2 \mathrm{H}, \mathrm{d}, J 8.3)$ and $7.49(2 \mathrm{H}, \mathrm{d}, J$ 8.3); $\delta_{\mathrm{C}} 13.9$ (q), 20.5 (q), 50.8 (t), 67.0 (t), 95.5 (d), 118.3 (d), 129.4 (d), 132.6 (s), 136.7 (s), 170.5 (s) and 171.4 (s).

Reaction of the Hexahydro-2H-indol-2-ones 1 with $L R$. General Procedure.-A solution of amide 1 (1 mmol) and LR (2 mmol) in benzene-DME ($9: 3 \mathrm{~cm}^{3}$) was heated under reflux for 15 min . After removal of the solvent under reduced pressure, the residual oil was chromatographed on a silica gel column with benzene-hexane $(1: 4)$ as eluent to yield the corresponding tetrahydroindoles 2.

1-Phenyl-4,5,6,7-tetrahydroindole 2a. B.p. $100^{\circ} \mathrm{C}$ at 2 mmHg
(Found: C, 84.85; H, 7.6; N, 7.0. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}$ requires $\mathrm{C}, 85.2 ; \mathrm{H}$, $7.65 ; \mathrm{N}, 7.1 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1600,1500,1310$ and $690 ; \delta_{\mathrm{H}}$ $1.71-1.88(4 \mathrm{H}, \mathrm{m}), 2.57(4 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.09(1 \mathrm{H}, \mathrm{d}, J 2.4), 6.75(1 \mathrm{H}$, d, $J 2.4$) and 7.15-7.50 ($5 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{c}} 23.3(\mathrm{t}), 23.5(\mathrm{t}), 23.6(\mathrm{t}), 108.1$ (d), 119.0 (s), 119.8 (d), 124.5 (d), 126.0 (d), 128.0 (s), 129.0 (s) and 140.3 (s).

1 -(p-Tolyl)-4,5,6,7-tetrahydroindole 2b. B.p. $90^{\circ} \mathrm{C}$ at 2 mmHg (Found: C, 85.25; N, 8.1; N, 6.6. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}$ requires $\mathrm{C}, 85.1 ; \mathrm{H}$, $8.1 ; \mathrm{N}, 6.5 \%) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1510,1480,1305$ and $820 ; \delta_{\mathrm{H}}$ 1.71-1.82 ($4 \mathrm{H}, \mathrm{m}$), 2.37 ($3 \mathrm{H}, \mathrm{s}$), 2.56 ($4 \mathrm{H}, \mathrm{br} \mathrm{s}$), 6.07 ($1 \mathrm{H}, \mathrm{d}, J$ 2.4), $6.72(1 \mathrm{H}, \mathrm{d}, J 2.4), 7.18(3 \mathrm{H}, \mathrm{s})$ and $7.20(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 20.9(\mathrm{q})$, 23.3 (t), 23.5 (t), 23.6 (t), 107.8 (d), 118.7 (s), 119.8 (d), 124.4 (d), 128.1 (s), 129.6 (d), 135.8 (s) and 137.8 (s).

1-(p-Methoxyphenyl)-4,5,6,7-tetrahydroindole 2c. B.p. $90^{\circ} \mathrm{C}$ at 2 mmHg (Found: $\mathrm{C}, 79.25 ; \mathrm{H}, 7.55 ; \mathrm{N}, 6.15 . \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}$ requires $\mathrm{C}, 78.9 ; \mathrm{H}, 7.5 ; \mathrm{N}, 6.05 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1510$, 1460,1440 and $835 ; \delta_{\mathrm{H}} 1.76(4 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.51-2.56(4 \mathrm{H}, \mathrm{m}), 3.81(3$ $\mathrm{H}, \mathrm{s}), 6.05(1 \mathrm{H}, \mathrm{d}, J 2.9), 6.69(1 \mathrm{H}, \mathrm{d}, J 2.9), 6.69(2 \mathrm{H}, \mathrm{d}, J 9.0)$ and $6.91(2 \mathrm{H}, \mathrm{d}, J 9.0)$.

1-(p-Chlorophenyl)-4,5,6,7-tetrahydroindole 2d. B.p. $90^{\circ} \mathrm{C}$ at 2 mmHg (Found: C, $72.55 ; \mathrm{H}, 6.1 ; \mathrm{N}, 6.05 . \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{CIN}$ requires C, $72.4 ; \mathrm{H}, 6.15 ; \mathrm{N}, 5.9 \%$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1600,1490,1310$, 1090 and $835 ; \delta_{\mathrm{H}} 1.71-1.83(4 \mathrm{H}, \mathrm{m}), 2.54(4 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.08(1 \mathrm{H}, \mathrm{d}$, $J 3.0), 6.71(1 \mathrm{H}, \mathrm{d}, J 3.0)$ and $7.13-7.49(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}} 23.2(\mathrm{t}), 23.3$ (t), 23.6 (t), 108.5 (d), 119.4 (s), 119.7 (d), 125.5 (d), 128.0 (s), 129.2 (d), 131.6 (s) and 137.7 (s).

3-Methyl-1-phenyl-4,5,6,7-tetrahydroindole 2e. B.p. $110^{\circ} \mathrm{C}$ at $2 \mathrm{mmHg} ; v_{\text {max }}\left(\mathrm{CDCl}_{3}\right) / \mathrm{cm}^{-1} 1600,1505,1400,1380$ and 695 ; $\delta_{\mathrm{H}} 1.70-1.81(4 \mathrm{H}, \mathrm{m}), 2.04(3 \mathrm{H}, \mathrm{s}), 2.44-2.53(4 \mathrm{H}, \mathrm{m}), 6.56(1 \mathrm{H}$, s) and 7.17-7.36(5 H, m); $\delta_{\mathrm{C}} 9.8(\mathrm{q}), 21.6(\mathrm{t}), 23.3(\mathrm{t}), 23.6(\mathrm{t})$, 117.4 (d), 117.6 (s), 118.9 (s), 124.1 (d), 125.5 (d), 127.8 (s), 128.9 (d) and 140.3 (s).

Oxidation of the Tetrahydroindoles 2a and 2e to Indoles 3a and 3e.-A mixture of a tetrahydroindole $2(200 \mathrm{mg})$ and chloranil (2.5 mol equiv) in toluene ($30 \mathrm{~cm}^{3}$) was refluxed under argon for 20 h . Usual work-up gave the corresponding indole 3. The structure of the products $\mathbf{3}$ was confirmed by direct comparison of their IR and NMR spectra with those of authentic samples. ${ }^{2 d}$

Reduction of the Hexahydro-2H-indol-2-ones 1 with DIBAH.To a solution of an amide $1(200 \mathrm{mg})$ in tetrahydrofuran (THF) $\left(20 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added a solution of DIBAH (3 mol equiv.) in THF ($1.5 \mathrm{~cm}^{3}$) under argon. The stirred mixture was allowed to warm to room temperature and was stirred for 2 h , then poured into $1 \mathrm{~mol} \mathrm{dm}^{-3}$ aq. NaOH and extracted with dichloromethane. The extract was dried over MgSO_{4} and concentrated, and the residue was chromatographed on a silica gel column with benzene-hexane ($1: 4$) to give the corresponding tetrahydroindole 2.

Reduction of 1-Phenyl-1,4,5,6,7,7a-hexahydro-2H-indol-2-one 1a with LAH.-A solution of amide $1 \mathrm{la}(200 \mathrm{mg})$ and LAH (4 mol equiv.) in diethyl ether ($20 \mathrm{~cm}^{3}$) was refluxed for 2 h . Usual work-up gave the tetrahydroindole $2 \mathrm{a}(20 \%$) and the pyrrolidine $8(21 \%)$, whose stereochemistry could not be determined from its spectral data (${ }^{1} \mathrm{H}$ NMR) because of spectral complexity.

1-Phenylperhydroindoline 8. B.p. $145^{\circ} \mathrm{C}$ at 2 mmHg (Found: $\mathrm{C}, 83.65 ; \mathrm{H}, 9.75 ; \mathrm{N}, 6.95 . \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}$ requires C, $83.55 ; \mathrm{H}, 9.5 ; \mathrm{N}$, 6.95%); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1590,1495,1365,740$ and $685 ; \delta_{\mathrm{H}} 1.00-$ $2.45(11 \mathrm{H}, \mathrm{m}), 3.09-3.47(2 \mathrm{H}, \mathrm{m}), 3.55-3.78(1 \mathrm{H}, \mathrm{m}), 6.45-6.72$ $(3 \mathrm{H}, \mathrm{m})$ and $7.08-7.34(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}} 21.3(\mathrm{t}), 23.8(\mathrm{t}), 26.4(\mathrm{t}), 26.7$ (t), 26.9 (t), 37.7 (d), 46.6 (t), 57.3 (d), 111.2 (d), 114.7 (d), 129.2 (d) and 147.1 (s).

Reaction of the 1,5-Dihydro-2H-pyrrol-2-ones 5 with LR. General Procedure.-A solution of a pyrrolone $5(1 \mathrm{mmol})$ and LR ($0.5-2$ mol equiv.) in toluene or DME ($30 \mathrm{~cm}^{3}$) was heated under reflux for 10 min under argon. Usual work-up gave the corresponding pyrrole 6 and 1,5-dihydropyrrole-2-thione 7.

4-Ethoxy-1-methyl-1,5-dihydro-2H-pyrrole-2-thione 7a. M.p. $103-104{ }^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane) (Found: C, $53.45 ; \mathrm{H}, 7.1 ; \mathrm{N}$, 8.9. $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NS}$ requires $\mathrm{C}, 53.5 ; \mathrm{H}, 7.15 ; \mathrm{N}, 8.9 \%$; $v_{\text {max }}-$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 1590,1490,1475,1380$ and $1340 ; \delta_{\mathrm{H}} 1.40(3 \mathrm{H}, \mathrm{t})$, $3.30(3 \mathrm{H}, \mathrm{s}), 4.00(2 \mathrm{H}, \mathrm{q}), 4.16(2 \mathrm{H}, \mathrm{s})$ and $5.61(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{c}} 14.1$ (q), 33.3 (q), 59.1 (t), 67.4 (t), 106.6 (d), 171.3 (s) and 197.5 (s).

4-Ethoxy-1-phenylpyrrole 6b. B.p. $145^{\circ} \mathrm{C}$ at 3 mmHg (Found: C, 76.75; H, 7.0; N, 7.45. $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}$ requires $\mathrm{C}, 77.0 ; \mathrm{H}$, $7.0 ; \mathrm{N}, 7.5 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 3130,1595,1560,1505,750,735$ and 685; $\delta_{\mathrm{H}} 1.39(3 \mathrm{H}, \mathrm{t}), 3.95(2 \mathrm{H}, \mathrm{q}), 6.02-6.08(1 \mathrm{H}, \mathrm{m}), 6.62-$ $6.67(1 \mathrm{H}, \mathrm{m}), 6.84-6.91(1 \mathrm{H}, \mathrm{m})$ and $7.06-7.48(5 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 15.0$ (q), 66.0 (t), 100.7 (d), 101.4 (d), 116.9 (d), 119.5 (d), 124.9 (d), 129.5 (d), 140.9 (s) and 149.6 (s).

4-Ethoxy-1-phenyl-1,5-dihydro-2H-pyrrole-2-thione 7b. M.p. $144-145{ }^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane) (Found: C, $65.65 ; \mathrm{H}, 6.0$; N , 6.4. $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NOS}$ requires $\mathrm{C}, 65.7 ; \mathrm{H}, 6.0 ; \mathrm{N}, 6.4 \%$); $v_{\text {max }}{ }^{-}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 1595,1575,1485,785,770$ and $700 ; \delta_{\mathrm{H}} 1.42(3 \mathrm{H}, \mathrm{t})$, $4.06(2 \mathrm{H}, \mathrm{q}), 4.55(2 \mathrm{H}, \mathrm{s}), 5.78(1 \mathrm{H}, \mathrm{s})$ and $7.18-7.66(5 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}$ 14.2 (q), 59.8 (t), 67.9 (t), 108.4 (d), 125.0 (d), 126.0 (d), 128.9 (d), 139.4 (s), 171.4 (s) and 197.7 (s).

4-Ethoxy-1-(p-tolyl)pyrrole 6c. B.p. $140^{\circ} \mathrm{C}$ at 3 mmHg (Found: C, 77.3; H, 7.55; N, 6.95. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires C, 77.6; H, $7.5 ; \mathrm{N}, 7.0 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1610,1590,1560,1520,815$ and 735 ; $\delta_{\mathrm{H}} 1.38(3 \mathrm{H}, \mathrm{t}), 2.31(3 \mathrm{H}, \mathrm{s}), 3.93(2 \mathrm{H}, \mathrm{q}), 6.02(1 \mathrm{H}, \mathrm{dd}, J 2.0$ and 2.9$), 6.60(1 \mathrm{H}, \mathrm{t}, J 2.0), 6.81(1 \mathrm{H}, \mathrm{t}, J 2.9)$ and $7.16(4 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}$ 14.9 (q), 20.6 (q), 65.9 (t), 100.1 (d), 101.4 (d), 116.8 (d), 119.4 (d), 129.9 (d), 134.4 (s), 138.5 (s) and 149.3 (s).

4-Ethoxy-1-(p-tolyl)-1,5-dihydro-2H-pyrrole-2-thione 7c. M.p. $121-122^{\circ} \mathrm{C}$ (from CHCl_{3}-hexane) (Found: $\mathrm{C}, 67.15 ; \mathrm{H}$, $6.55 ; \mathrm{N}, 5.95 . \mathrm{C}_{13} \mathrm{H}_{15}$ NOS requires $\mathrm{C}, 66.9 ; \mathrm{H}, 6.5 ; \mathrm{N}, 6.0 \%$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1605,1505,1435,800$ and $720 ; \delta_{\mathrm{H}} 1.42(3 \mathrm{H}, \mathrm{t})$, $2.35(3 \mathrm{H}, \mathrm{s}), 4.05(2 \mathrm{H}, \mathrm{q}), 4.51(2 \mathrm{H}, \mathrm{s}), 5.76(1 \mathrm{H}, \mathrm{s}), 7.21(2 \mathrm{H}, \mathrm{d}$, $J 8.3$) and $7.44(2 \mathrm{H}, \mathrm{d}, J 8.3) ; \delta_{\mathrm{C}} 14.0(\mathrm{q}), 21.0(\mathrm{q}), 59.9(\mathrm{t}), 67.5(\mathrm{t})$, 108.1 (d), 125.0 (d), 129.4 (d), 136.8 (s), 171.2 (s) and 197.5 (s).

References

1 M. P. Cava and M. I. Levinson, Tetrahedron, 1985, 41, 5061.
2 (a) T. Nishio, J. iem. Soc., Perkin Trans. 1, 1987, 1225; (b) T. Nishio, M. Fujisawa and Y. Omote, J. Chem. Soc., Perkin Trans. 1, 1987, 2523; (c) T. Nishio, N. Okuda, C. Kashima and Y. Omote, J. Chem. Soc., Chem. Commun., 1988, 572; (d) T. Nishio, J. Org. Chem., 1988, 53, 1323; (e) T. Nishio, N. Okuda and Y. Omote, J. Chem. Soc., Perkin Trans. 1, 1988, 1663; (f) T. Nishio, N. Okuda and C. Kashima, J. Chem. Soc., Perkin Trans. 1, 1991, 141.

3 T. Nishio, N. Okuda, Y. Mori and C. Kashima, Synthesis, 1989, 396. 4 T. Nishio, J. Chem. Soc., Chem. Commun., 1989, 205.
5 (a) R. J. Sundberg, in Comprehensive Heterocyclic Chemistry, eds. A. R. Katritzky and C. W. Rees, Pergamon Press, 1984, vol. 4, p. 313; (b) R. J. Sundberg, in The Chemistry of Indoles, Academic Press, New York, 1970; (c) T. Nishio, N. Okuda and C. Kashima, Helv. Chim. Acta, 1990, 73, 1719.
6 (a) E. Winterfeldt, Synthesis, 1975, 617; (b) K. Kochhar and H. W. Pinnick, J. Org. Chem., 1984, 49, 3222.
7 A. Bertho and H. Kurzmann, Chem. Ber., 1957, 90, 2319.

Paper 1/05473B
Received 28th October 1991
Accepted 6th January 1992

